extension | φ:Q→Aut N | d | ρ | Label | ID |
C33.1(C3xS3) = C3.C3wrS3 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 54 | 6 | C3^3.1(C3xS3) | 486,4 |
C33.2(C3xS3) = C32:C9.S3 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 18 | 6 | C3^3.2(C3xS3) | 486,5 |
C33.3(C3xS3) = C32:C9:C6 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 18 | 6 | C3^3.3(C3xS3) | 486,6 |
C33.4(C3xS3) = C32:C9:S3 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 18 | 6 | C3^3.4(C3xS3) | 486,7 |
C33.5(C3xS3) = C3.3C3wrS3 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 54 | 6 | C3^3.5(C3xS3) | 486,8 |
C33.6(C3xS3) = (C3xHe3).C6 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 54 | 6 | C3^3.6(C3xS3) | 486,9 |
C33.7(C3xS3) = C32:C9.C6 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 54 | 6 | C3^3.7(C3xS3) | 486,10 |
C33.8(C3xS3) = C33.(C3xS3) | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 54 | 6 | C3^3.8(C3xS3) | 486,11 |
C33.9(C3xS3) = C32:2D9.C3 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 54 | 6 | C3^3.9(C3xS3) | 486,12 |
C33.10(C3xS3) = D9:He3 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 54 | 6 | C3^3.10(C3xS3) | 486,106 |
C33.11(C3xS3) = C9:He3:C2 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 54 | 6 | C3^3.11(C3xS3) | 486,107 |
C33.12(C3xS3) = C92:7C6 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 54 | 6 | C3^3.12(C3xS3) | 486,109 |
C33.13(C3xS3) = C92:8C6 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 18 | 6 | C3^3.13(C3xS3) | 486,110 |
C33.14(C3xS3) = (C3xHe3):C6 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 27 | 18+ | C3^3.14(C3xS3) | 486,127 |
C33.15(C3xS3) = He3.C3:C6 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 27 | 9 | C3^3.15(C3xS3) | 486,128 |
C33.16(C3xS3) = C9:S3:C32 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 27 | 18+ | C3^3.16(C3xS3) | 486,129 |
C33.17(C3xS3) = He3.(C3xC6) | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 27 | 9 | C3^3.17(C3xS3) | 486,130 |
C33.18(C3xS3) = He3.(C3xS3) | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 27 | 18+ | C3^3.18(C3xS3) | 486,131 |
C33.19(C3xS3) = C3wrC3.C6 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 27 | 9 | C3^3.19(C3xS3) | 486,132 |
C33.20(C3xS3) = (C32xC9):S3 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 54 | 6 | C3^3.20(C3xS3) | 486,149 |
C33.21(C3xS3) = (C32xC9):8S3 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 54 | 6 | C3^3.21(C3xS3) | 486,150 |
C33.22(C3xS3) = C92:6S3 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 18 | 6 | C3^3.22(C3xS3) | 486,153 |
C33.23(C3xS3) = C92:5S3 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 54 | 6 | C3^3.23(C3xS3) | 486,156 |
C33.24(C3xS3) = 3- 1+4:C2 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 27 | 18+ | C3^3.24(C3xS3) | 486,238 |
C33.25(C3xS3) = 3- 1+4:2C2 | φ: C3xS3/C1 → C3xS3 ⊆ Aut C33 | 27 | 9 | C3^3.25(C3xS3) | 486,239 |
C33.26(C3xS3) = C33:1D9 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 18 | 6 | C3^3.26(C3xS3) | 486,19 |
C33.27(C3xS3) = (C3xC9):D9 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.27(C3xS3) | 486,21 |
C33.28(C3xS3) = (C3xC9):3D9 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.28(C3xS3) | 486,23 |
C33.29(C3xS3) = He3:C18 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.29(C3xS3) | 486,24 |
C33.30(C3xS3) = C3xC32:D9 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 54 | | C3^3.30(C3xS3) | 486,94 |
C33.31(C3xS3) = C9xC32:C6 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.31(C3xS3) | 486,98 |
C33.32(C3xS3) = C9xC9:C6 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.32(C3xS3) | 486,100 |
C33.33(C3xS3) = C34:S3 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 27 | | C3^3.33(C3xS3) | 486,103 |
C33.34(C3xS3) = C34.S3 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 27 | | C3^3.34(C3xS3) | 486,105 |
C33.35(C3xS3) = C3xHe3.C6 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.35(C3xS3) | 486,118 |
C33.36(C3xS3) = C3xHe3.2C6 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.36(C3xS3) | 486,121 |
C33.37(C3xS3) = C3wrS3:3C3 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 27 | 3 | C3^3.37(C3xS3) | 486,125 |
C33.38(C3xS3) = C3xC32:2D9 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 54 | | C3^3.38(C3xS3) | 486,135 |
C33.39(C3xS3) = C92:4S3 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.39(C3xS3) | 486,140 |
C33.40(C3xS3) = C9xHe3:C2 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.40(C3xS3) | 486,143 |
C33.41(C3xS3) = C34.7S3 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 18 | 6 | C3^3.41(C3xS3) | 486,147 |
C33.42(C3xS3) = C9:C9:2S3 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.42(C3xS3) | 486,152 |
C33.43(C3xS3) = C34:5S3 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 18 | 6 | C3^3.43(C3xS3) | 486,166 |
C33.44(C3xS3) = He3.C3:S3 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.44(C3xS3) | 486,169 |
C33.45(C3xS3) = He3:C3:2S3 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.45(C3xS3) | 486,172 |
C33.46(C3xS3) = C32xC9:C6 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 54 | | C3^3.46(C3xS3) | 486,224 |
C33.47(C3xS3) = C3xHe3.4C6 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 81 | | C3^3.47(C3xS3) | 486,235 |
C33.48(C3xS3) = C9oHe3:4S3 | φ: C3xS3/C3 → S3 ⊆ Aut C33 | 54 | 6 | C3^3.48(C3xS3) | 486,246 |
C33.49(C3xS3) = C33:1C18 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 18 | 6 | C3^3.49(C3xS3) | 486,18 |
C33.50(C3xS3) = (C3xC9):C18 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.50(C3xS3) | 486,20 |
C33.51(C3xS3) = C9:S3:3C9 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.51(C3xS3) | 486,22 |
C33.52(C3xS3) = He3:D9 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 81 | | C3^3.52(C3xS3) | 486,25 |
C33.53(C3xS3) = D9xHe3 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.53(C3xS3) | 486,99 |
C33.54(C3xS3) = D9x3- 1+2 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.54(C3xS3) | 486,101 |
C33.55(C3xS3) = C34.C6 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 18 | 6 | C3^3.55(C3xS3) | 486,104 |
C33.56(C3xS3) = D9:3- 1+2 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.56(C3xS3) | 486,108 |
C33.57(C3xS3) = C3xC33:C6 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 18 | 6 | C3^3.57(C3xS3) | 486,116 |
C33.58(C3xS3) = C3xHe3.S3 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.58(C3xS3) | 486,119 |
C33.59(C3xS3) = C3xHe3.2S3 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.59(C3xS3) | 486,122 |
C33.60(C3xS3) = C92:3S3 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.60(C3xS3) | 486,139 |
C33.61(C3xS3) = He3:3D9 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 81 | | C3^3.61(C3xS3) | 486,142 |
C33.62(C3xS3) = C34:4C6 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 27 | | C3^3.62(C3xS3) | 486,146 |
C33.63(C3xS3) = C9:He3:2C2 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 81 | | C3^3.63(C3xS3) | 486,148 |
C33.64(C3xS3) = (C32xC9):C6 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 81 | | C3^3.64(C3xS3) | 486,151 |
C33.65(C3xS3) = C32:4D9:C3 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 81 | | C3^3.65(C3xS3) | 486,170 |
C33.66(C3xS3) = He3:C3:3S3 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 81 | | C3^3.66(C3xS3) | 486,173 |
C33.67(C3xS3) = C3wrC3.S3 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 27 | 6+ | C3^3.67(C3xS3) | 486,175 |
C33.68(C3xS3) = C3:S3x3- 1+2 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 54 | | C3^3.68(C3xS3) | 486,233 |
C33.69(C3xS3) = C3xHe3.4S3 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 54 | 6 | C3^3.69(C3xS3) | 486,234 |
C33.70(C3xS3) = C9oHe3:3S3 | φ: C3xS3/C3 → C6 ⊆ Aut C33 | 81 | | C3^3.70(C3xS3) | 486,245 |
C33.71(C3xS3) = S3xC32:C9 | φ: C3xS3/S3 → C3 ⊆ Aut C33 | 54 | | C3^3.71(C3xS3) | 486,95 |
C33.72(C3xS3) = C3xS3x3- 1+2 | φ: C3xS3/S3 → C3 ⊆ Aut C33 | 54 | | C3^3.72(C3xS3) | 486,225 |
C33.73(C3xS3) = C9:S3:C9 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.73(C3xS3) | 486,3 |
C33.74(C3xS3) = D9xC3xC9 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.74(C3xS3) | 486,91 |
C33.75(C3xS3) = C3xC32:C18 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.75(C3xS3) | 486,93 |
C33.76(C3xS3) = C3xC9:C18 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.76(C3xS3) | 486,96 |
C33.77(C3xS3) = C9xC9:S3 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.77(C3xS3) | 486,133 |
C33.78(C3xS3) = C33:C18 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.78(C3xS3) | 486,136 |
C33.79(C3xS3) = C33:D9 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 81 | | C3^3.79(C3xS3) | 486,137 |
C33.80(C3xS3) = C9:(S3xC9) | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.80(C3xS3) | 486,138 |
C33.81(C3xS3) = D9xC33 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 162 | | C3^3.81(C3xS3) | 486,220 |
C33.82(C3xS3) = C32xC9:S3 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.82(C3xS3) | 486,227 |
C33.83(C3xS3) = C3:S3xC3xC9 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.83(C3xS3) | 486,228 |
C33.84(C3xS3) = C3xC33.S3 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 54 | | C3^3.84(C3xS3) | 486,232 |
C33.85(C3xS3) = C3xC32:4D9 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 162 | | C3^3.85(C3xS3) | 486,240 |
C33.86(C3xS3) = C9xC33:C2 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 162 | | C3^3.86(C3xS3) | 486,241 |
C33.87(C3xS3) = C34.11S3 | φ: C3xS3/C32 → C2 ⊆ Aut C33 | 81 | | C3^3.87(C3xS3) | 486,244 |
C33.88(C3xS3) = S3xC32xC9 | central extension (φ=1) | 162 | | C3^3.88(C3xS3) | 486,221 |